Triniobium, Wells–Dawson-Type Polyoxoanion,
[(<i>n</i>‑C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub>: Improvements in the Synthesis, Its Reliability, the Purity of the
Product, and the Detailed Synthetic Procedure
- Publication date
- Publisher
Abstract
Reproducible syntheses of high-purity
[(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub> and,
therefore, also the supported
[(1,5-COD)Ir<sup>I</sup>]<sup>+</sup> organometallic precatalyst,
[(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>5</sub>Na<sub>3</sub>(1,5-COD)Ir(P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub>), have historically proven quite challenging.
In 2002, Hornstein et al. published an improved synthesis reporting
90% pure [(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub> in their hands. Unfortunately, 36 subsequent attempts to replicate
that 2002 synthesis by four researchers in our laboratories produced
material with an average purity of 82 ± 7%, albeit as judged
by the improved S/N <sup>31</sup>P NMR now more routinely possible.
Herein we (1) verify problems in reproducing ≥90% purity [(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub>, (2) determine
three critical variables for the successful production of [(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub>, (3) optimize the
synthesis to achieve 91–94% pure [(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub>, and (4) successfully reproduce
and verify the synthesis via another researcher (Dr. Saim Özkar)
working only from the written procedure. The key variables underlying
previously irreproducible syntheses are (i) a too-short and incomplete,
insufficient volume washing step for Na<sub>12</sub>[α-P<sub>2</sub>W<sub>15</sub>O<sub>56</sub>]·18H<sub>2</sub>O that (previously)
failed to remove the WO<sub>4</sub><sup>2–</sup> byproduct
present, (ii) inadequate reaction time and the need for a slight excess
of niobium(V) during the incorporation of three niobium(V) ions into
α-P<sub>2</sub>W<sub>15</sub>O<sub>56</sub><sup>12–</sup>, and (iii) incomplete removal of protons from the resultant [(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>5</sub>H<sub>4</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub> intermediate.
These three insights have allowed improvement of the synthesis to
a 91–94% final purity [(<i>n</i>-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>9</sub>P<sub>2</sub>W<sub>15</sub>Nb<sub>3</sub>O<sub>62</sub> product by high S/N <sup>31</sup>P NMR. Moreover,
the synthesis provided both is very detailed and has been independently
checked (by Dr. Özkar) <i>using only the written procedures</i>. The finding that prior syntheses of Na<sub>12</sub>[α-P<sub>2</sub>W<sub>15</sub>O<sub>56</sub>] are contaminated with WO<sub>4</sub><sup>2–</sup> is one of the seemingly simple, but previously
confounding, findings of the present work. An explicit check of the
procedure is the second most important, more general feature of the
present paper, namely, recognizing, discussing, and hopefully achieving
a <i>level of written reporting</i> necessary to make such
challenging polyoxometalate inorganic syntheses reproducible in the
hands of others