Schizophrenic Core–Shell Microgels: Thermoregulated Core and Shell Swelling/Collapse by Combining UCST and LCST Phase Transitions

Abstract

A variety of slightly cross-linked poly­(2-vinylpyridine)–poly­(<i>N</i>-isopropylacrylamide) (P2VP–PNIPAM) core–shell microgels with pH- and temperature-responsive characteristic were prepared via seeded emulsion polymerization. Negatively charged sodium 2,6-naphthalenedisulfonate (2,6-NDS) could be internalized into the inner core, followed by formation of (P2VPH<sup>+</sup>/SO<sub>3</sub><sup>2–</sup>) supramolecular complex through the electrostatic attractive interaction in acid condition. The thermoresponsive characteristic feature of the (P2VPH<sup>+</sup>/SO<sub>3</sub><sup>2–</sup>)–PNIPAM core–shell microgels was investigated by laser light scattering and UV–vis measurement, revealing an integration of upper critical solution temperature (UCST) and lower critical solution temperature (LCST) behaviors in the temperature range of 20–55 °C. The UCST performance arised from the compromised electrostatic attractive interaction between P2VPH<sup>+</sup> and 2,6-NDS at elevated temperatures, while the subsequent LCST transition is correlated to the thermo-induced collapse of PNIPAM shells. The controlled release of 2,6-NDS was monitored by static fluorescence spectra as a function of temperature change. Moreover, stopped-flow equipped with a temperature-jump accessory was then employed to assess the dynamic process, suggesting a millisecond characteristic relaxation time of the 2,6-NDS diffusion process. Interestingly, the characteristic relaxation time is independent of the shell cross-link density, whereas it was significantly affected by shell thickness. We believe that these dual thermoresponsive core–shell microgels with thermotunable volume phase transition may augur promising applications in the fields of polymer science and materials, particularly for temperature-triggered release

    Similar works

    Full text

    thumbnail-image

    Available Versions