Organic Pollutant Clustered in the Plant Cuticular Membranes: Visualizing the Distribution of Phenanthrene in Leaf Cuticle Using Two-Photon Confocal Scanning Laser Microscopy

Abstract

Plants play a key role in the transport and fate of organic pollutants. Cuticles on plant surfaces represent the first resistance for the uptake of airborne toxicants. In this study, a confocal scanning microscope enhanced with a two-photon laser was applied as a direct and noninvasive probe to explore the in situ uptake of a model pollutant, phenanthrene (PHE), into the cuticular membrane of a hypostomatic plant, <i>Photinia serrulata</i>. On the leaf cuticle surfaces, PHE forms clusters instead of being evenly distributed. The PHE distribution was quantified by the PHE fluorescence intensity. When PHE concentrations in water varying over 5 orders of magnitude were applied to the isolated cuticle, the accumulated PHE level by the cuticle was not vastly different, whether PHE was applied to the outer or inner side of the cuticle. Notably, PHE was found to diffuse via a channel-like pathway into the middle layer of the cuticle matrix, where it was identified to be composed of polymeric lipids. The strong affinity of PHE for polymeric lipids is a major contributor of the fugacity gradient driving the diffusive uptake of PHE in the cuticular membrane. Membrane lipids constitute important domains for hydrophobic interaction with pollutants, determining significant differentials of fugacities within the membrane microsystem. These, under unsteady conditions, contribute to enhance net transport and clustering along the <i>z</i> dimension. Moreover, the liquid-like state of polymeric lipids may promote mobility by enhancing the diffusion rate. The proposed “diffusive uptake and storage” function of polymeric lipids within the membrane characterizes the modality of accumulation of the hydrophobic contaminant at the interface between the plant and the environment. Assessing the capacity of fugacity of these constituents in detail will bring about knowledge of contaminant fate in superior plants with a higher level of accuracy

    Similar works

    Full text

    thumbnail-image

    Available Versions