Photoinduced Conversion of Methane into Benzene over GaN Nanowires

Abstract

As a class of key building blocks in the chemical industry, aromatic compounds are mainly derived from the catalytic reforming of petroleum-based long chain hydrocarbons. The dehydroaromatization of methane can also be achieved by using zeolitic catalysts under relatively high temperature. Herein we demonstrate that Si-doped GaN nanowires (NWs) with a 97% rationally constructed <i>m</i>-plane can directly convert methane into benzene and molecular hydrogen under ultraviolet (UV) illumination at rt. Mechanistic studies suggest that the exposed <i>m</i>-plane of GaN exhibited particularly high activity toward methane C–H bond activation and the quantum efficiency increased linearly as a function of light intensity. The incorporation of a Si-donor or Mg-acceptor dopants into GaN also has a large influence on the photocatalytic performance

    Similar works

    Full text

    thumbnail-image

    Available Versions