Abstract

Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III–V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p–n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (<i>V</i><sub>oc</sub>) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p–i–n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher <i>V</i><sub>oc</sub> under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics

    Similar works

    Full text

    thumbnail-image

    Available Versions