thesis

Theoretical study of the interaction of agonists with the 5-HT2A receptor

Abstract

The 5-HT2A receptor (5-HT2AR) is a biogenic amine receptor that belongs to the class A of G protein coupled receptors. It is characterized by a low affinity for serotonin (5-HT) and for other primary amines. Introduction of an ortho-methoxybenzyl substituent at the amine nitrogen increases the partial agonistic activity by a factor of 40 to 1400 compared with 5-HT. The present study was to analyse the QSAR of a series of 51 5-HT2AR partial agonistic arylethylamines, tested in vascular in-vitro assays on rats, at a structure-based level and to suggest ligand binding sites. The compounds belong to three different structural classes, (1) indoles, (2) methoxybenzenes and (3) quinazolinediones. Following a hierarchical strategy, different methods have been applied which all contribute to the investigation of ligand-receptor interactions: fragment regression analysis (FRA), receptor modeling, docking studies and 3D QSAR approaches (comparative molecular field analysis, CoMFA, and comparative molecular similarity index analysis, CoMSIA). An initial FRA indicated that methoxy substituents at indole and phenyl derivatives increase the activity and may be involved in polar interactions with the 5-HT2AR. The large contribution of lipophilic substituents in p position of phenethylamines suggests fit to a specific hydrophobic pocket. Secondary benzylamines are more than one order of magnitude more active than their NH2 analogs. An ortho-OH or -OMe substituent at the benzyl moiety further increases activity. Homology models of the human and rat 5-HT2AR were generated using the crystal structure of bovine rhodopsin and of the beta2-adrenoceptor as templates. The derivation of the putative binding sites for the arylethylamines was based on the results from FRA and on mutagenesis data. Both templates led to 5-HT2AR models with similar topology of the binding pocket within the transmembrane domains TM3, TM5, TM6 and TM7. Docking studies with representative members of the three structural classes suggested that the aryl moieties and particularly para-substituents in phenyl derivatives fit into a hydrophobic pocket formed by Phe2435.47, Phe2445.48 and Phe3406.52. The 5-methoxy substituents in indole and phenyl compounds form H bonds with Ser2395.43. In each case, an additional H bond with Ser1593.36 may be assumed. The cationic amine interacts with the conserved Asp1553.32. The benzyl group of secondary arylethylamines is inserted into another hydrophobic pocket formed by Phe3396.51, Trp3677.40 and Tyr3707.43. In this region, the docking poses depend on the template used for model generation, leading to different interactions especially of ortho- substituents. The docking studies with the beta2-adrenoceptor based rat 5-HT2AR model provided templates for a structure-based alignment of the whole series which was used in 3D QSAR analyses of the partial agonistic activity. Both approaches, CoMFA and CoMSIA, led to highly predictive models with low complexity (cross-validated q2 of 0.72 and 0.81 at 4 and 3 components, respectively). The results were largely compatible with the binding site and confirm the docking studies and the suggested ligand-receptor interactions. Steric and hydrophobic field effects on the potency indicate a hydrophobic pocket around the aryl moiety and near the para position of phenyl derivatives and account for the increased activity of secondary benzylamines. The effects of electrostatic and H-bond acceptor fields suggest a favourable influence of negative charges around the aryl moiety, corresponding to the increase in potency caused by methoxy substituents in 2-, 4-, 5- and 6-position of phenethylamines and by the quinazolinedione oxygens. This is in accord with the role of Ser1593.36 and Ser2395.43 as H bond donors. At the benzyl moiety, the negative charge and the acceptor potential of 2-hydroxy and -methoxy substituents is of advantage. Agonists stabilize or induce active receptor states not reflected by the existing crystal structures. Based on models of different rhodopsin states, a homology modeling and ligand docking study on corresponding 5-HT2AR states suggested to be specific to agonist and partial agonist binding, respectively, was performed. The models indicate collective conformational changes of TM domains during activation. The different 5-HT2AR states are similar with respect to the amino acids interacting with the arylethylamines, but show individual topologies of the binding sites. The interconversion of states by TM movements may be accompanied by co-translations and rotations of the ligands. In the case of the secondary amines considered, the tight fit of the benzyl substituent into a hydrophobic pocket containing key residues in TM6 probably impedes the complete receptor activation due to inhibiting the rotation of this helix. High affinity of a partial agonist is therefore often at the expense of its ability to fully activate a receptor

    Similar works