Synthetic K<sup>+</sup>/Cl<sup>–</sup>‑Selective Symporter across a Phospholipid Membrane

Abstract

Synthetic molecules which selectively transport sodium or potassium chloride across a lipid membrane have been prepared. The salt carriers consist of two heteroditopic binding sites, an anion-binding cavity with three hydrogen bond donors and an azacrown ether for binding an alkali metal cation. The association constants between the carriers and chloride ion have been enhanced by 1 order of the magnitude in the presence of sodium or potassium ion in 10% (v/v) CD<sub>3</sub>OH/CD<sub>3</sub>CN, due to the formation of a contact ion-pair between the bound cation and chloride as demonstrated by the single-crystal X-ray structure of a sodium chloride complex. A series of transport experiments have demonstrated that the synthetic molecule functions as a mobile carrier of transporting salts via M<sup>+</sup>/Cl<sup>–</sup> symport. Among alkali metal chlorides, the carrier with an 18-azacrown-6 exhibits a strong selectivity toward potassium chloride, while the carrier with a 15-azacrown-5 displays a moderate selectivity for sodium chloride

    Similar works

    Full text

    thumbnail-image

    Available Versions