Are Dinucleoside Monophosphates Relevant Models for the Study of DNA Intrastrand Cross-Link Lesions? The Example of G[8–5m]T

Abstract

Oxidatively generated tandem lesions such as G­[8–5m]­T pose a potent threat to genome integrity. Direct experimental studies of the kinetics and thermodynamics of a specific lesion within DNA are very challenging, mostly due to the variety of products that can be formed in oxidative conditions. Dinucleoside monophosphates (DM) involving only the reactive nucleobases in water represent appealing alternative models on which most physical chemistry and structural techniques can be applied. However, it is not yet clear how relevant these models are. Here, we present QM/MM MD simulations of the cyclization step involved in the formation of G­[8–5m]­T from the guanine–thymine (GpT) DM in water, with the aim of comparing our results to our previous investigation of the same reaction in DNA (Garrec, J., Patel, C., Rothlisberger, U., and Dumont, E. (2012) J. Am. Chem. Soc. 134, 2111−2119). We show that, despite the different levels of preorganization of the two systems, the corresponding reactions share many energetic and structural characteristics. The main difference lies in the angle between the G and T bases, which is slightly higher in the transition state (TS) and product of the reaction in water than in the reaction in DNA. This effect is due to the Watson–Crick H-bonds, which are absent in the {GpT+water} system and restrain the relative positioning of the reactive nucleobases in DNA. However, since the lesion is accommodated easily in the DNA macromolecule, the induced energetic penalty is relatively small. The high similarity between the two reactions strongly supports the use of GpT in water as a model of the corresponding reaction in DNA

    Similar works

    Full text

    thumbnail-image

    Available Versions