Interface Engineering To Control Magnetic Field Effects of Organic-Based Devices by Using a Molecular Self-Assembled Monolayer

Abstract

Organic semiconductors hold immense promise for the development of a wide range of innovative devices with their excellent electronic and manufacturing characteristics. Of particular interest are nonmagnetic organic semiconductors that show unusual magnetic field effects (MFEs) at small subtesla field strength that can result in substantial changes in their optoelectronic and electronic properties. These unique phenomena provide a tremendous opportunity to significantly impact the functionality of organic-based devices and may enable disruptive electronic and spintronic technologies. Here, we present an approach to vary the MFEs on the electrical resistance of organic-based systems in a simple yet reliable fashion. We experimentally modify the interfacial characteristics by adding a self-assembled monolayer between the metal electrode and the organic semiconductor, thus enabling the tuning of competing MFE mechanisms coexisting in organic semiconductors. This approach offers a robust method for tuning the magnitude and sign of magneto­resistance in organic semiconductors without compromising the ease of processing

    Similar works

    Full text

    thumbnail-image

    Available Versions