Growth and development of the barnacle <i>Amphibalanus amphitrite</i>: time and spatially resolved structure and chemistry of the base plate

Abstract

<div><p>The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, <i>Amphibalanus</i> (= <i>Balanus</i>) <i>amphitrite</i> were resolved <i>in situ</i> and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide <i>ex situ</i> material identification of regions imaged by confocal microscopy. <i>In situ</i> and <i>ex situ</i> analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.</p></div

    Similar works

    Full text

    thumbnail-image

    Available Versions