Competitive Assembly To Increase the Performance of the DNA/Carbon-Nanomaterial-Based Sensing Platform

Abstract

Increasing the rate of target binding on the surface and enhancing the fluorescence signal restoration efficiency are critical to the desirable biomedical application of carbon nanomaterials, for example, single-walled carbon nanotubes (SWNTs). We describe here a strategy to increase the target binding rate and enhance the fluorescence signal restoration efficiency on the DNA-functionalized SWNT surface using a short complementary DNA (scDNA) strand. The scDNA causes up to a 2.5-fold increase in association rate and 4-fold increase in fluorescence signal restoration by its competitive assembly on the nanostructure’s surface and inducing a conformational change that extends the DNA away from the surface, making it more available to bind target nucleic acids. The scDNA-induced enhancement of binding kinetics and fluorescence signal restoration efficiency is a general phenomenon that occurred with all sequences and surfaces investigated. Through this competitive assembly strategy of scDNA, performance improvement of the carbon-nanomaterial-based biosensing platform for both in vitro detection and live cell imaging can be reached

    Similar works

    Full text

    thumbnail-image

    Available Versions