Ion Mobility Spectrometry, Infrared Dissociation Spectroscopy, and ab Initio Computations toward Structural Characterization of the Deprotonated Leucine-Enkephalin Peptide Anion in the Gas Phase

Abstract

Although the sequencing of protonated proteins and peptides with tandem mass spectrometry has blossomed into a powerful means of characterizing the proteome, much less effort has been directed at their deprotonated analogues, which can offer complementary sequence information. We present a unified approach to characterize the structure and intermolecular interactions present in the gas-phase pentapeptide leucine-enkephalin anion by several vibrational spectroscopy schemes as well as by ion-mobility spectrometry, all of which are analyzed with the help of quantum-chemical computations. The picture emerging from this study is that deprotonation takes place at the C terminus. In this configuration, the excess charge is stabilized by strong intramolecular hydrogen bonds to two backbone amide groups and thus provides a detailed picture of a potentially common charge accommodation motif in peptide anions

    Similar works

    Full text

    thumbnail-image

    Available Versions