Combined Crossed Molecular Beam and ab Initio Investigation of the Multichannel Reaction of Boron Monoxide (BO; X<sup>2</sup>Σ<sup>+</sup>) with Propylene (CH<sub>3</sub>CHCH<sub>2</sub>; X<sup>1</sup>A′): Competing Atomic Hydrogen and Methyl Loss Pathways

Abstract

The reaction dynamics of boron monoxide (<sup>11</sup>BO; X<sup>2</sup>Σ<sup>+</sup>) with propylene (CH<sub>3</sub>CHCH<sub>2</sub>; X<sup>1</sup>A′) were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol<sup>–1</sup>. The crossed molecular beam investigation combined with <i>ab initio</i> electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming <sup>11</sup>BOC<sub>3</sub>H<sub>6</sub> intermediate(s). The long-lived <sup>11</sup>BOC<sub>3</sub>H<sub>6</sub> doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form <i>cis</i>-/<i>trans</i>-1-propenyl-oxo-borane (CH<sub>3</sub>CHCH<sup>11</sup>BO), 3-propenyl-oxo-borane (CH<sub>2</sub>CHCH<sub>2</sub><sup>11</sup>BO), and ethenyl-oxo-borane (CH<sub>2</sub>CH<sup>11</sup>BO), respectively. Utilizing partially deuterated propylene (CD<sub>3</sub>CHCH<sub>2</sub> and CH<sub>3</sub>CDCD<sub>2</sub>), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming <i>cis</i>-/<i>trans</i>-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively

    Similar works

    Full text

    thumbnail-image

    Available Versions