Effect
of Simultaneous Substitution of Y and Ta on
the Stabilization of Cubic Phase, Microstructure, and Li<sup>+</sup> Conductivity of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Lithium Garnet
- Publication date
- Publisher
Abstract
Garnet-type
lithium stuffed oxide Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZ) in the cubic phase has received significant
attention because of its high Li<sup>+</sup> conductivity at room
temperature and excellent stability against lithium metal anodes.
In addition to the high Li<sup>+</sup> conductivity, the dense microstructure
is also a critical issue for the successful application of LLZ as
a solid electrolyte membrane in all-solid-state lithium and lithium–air
batteries. The stabilization of LLZ in the cubic phase with dopants
indicated a reduction in sintering temperature with La<sup>3+</sup> site doping and improved conductivity by doping the Zr<sup>4+</sup> site. However, there are only a few reports regarding the simultaneous
substitution
on the La<sup>3+</sup> and on the Zr<sup>4+</sup> site in LLZ. In
the present study, systematic investigations have been carried out
on Li<sub>7–<i>x</i></sub>La<sub>3–<i>y</i></sub>Y<sub><i>y</i></sub>Zr<sub>2–<i>x</i></sub>Ta<sub><i>x</i></sub>O<sub>12</sub> (<i>x</i> = 0.4, <i>y =</i> 0, 0.125, 0.25,
and 0.5) to understand the effect of simultaneous substitution of
Y<sup>3+</sup> for La<sup>3+</sup> and Ta<sup>5+</sup> for Zr<sup>4+</sup> in LLZ on the stabilization of the high conductive cubic
phase, microstructure, and Li<sup>+</sup> conduction behavior. Powder
X-ray diffraction (PXRD) revealed the stabilization of a
cubic-like garnet structure for the entire selected compositional
range of Li<sub>7–<i>x</i></sub>La<sub>3–<i>y</i></sub>Y<sub><i>y</i></sub>Zr<sub>2–<i>x</i></sub>Ta<sub><i>x</i></sub>O<sub>12</sub> (<i>x</i> = 0.4, <i>y</i> = 0, 0.125, 0.25,
and 0.5) samples sintered at 750 °C. However, the Raman spectra
revealed that the cubic phase stabilized at around
750 °C for the Li<sub>7–<i>x</i></sub>La<sub>3–<i>y</i></sub>Y<sub><i>y</i></sub>Zr<sub>2–<i>x</i></sub>Ta<sub><i>x</i></sub>O<sub>12</sub> (<i>x</i> = 0.4, <i>y</i> = 0, 0.125,
0.25,
and 0.5) samples is different from the high Li<sup>+</sup> conductive
cubic phase (<i>Ia</i>3̅<i>d</i>), and the
transformation to the high Li<sup>+</sup> conductive cubic phase with
a distorted lithium sublattice (<i>Ia</i>3̅<i>d</i>) is observed only
for the samples sintered at elevated temperature. Preliminary thermogravimetric
(TG), Raman, and Fourier transform infrared (FTIR) studies indicated
that the observed low temperature cubic phase of the investigated
samples sintered at 750 °C might result from insertion of water
vapor
from the humid atmosphere into the crystal lattice and subsequent
replacement of the lithium ions by protons to form O–H bonds.
The AC impedance analysis indicated that the optimal Y substitution
in Li<sub>7–<i>x</i></sub>La<sub>3–<i>y</i></sub>Y<sub><i>y</i></sub>Zr<sub>2–<i>x</i></sub>Ta<sub><i>x</i></sub>O<sub>12</sub> (<i>x</i> = 0.4, <i>y</i> = 0.125 and 0.25)
helps to reduce the grain boundary resistance in a major way and also
helps to reduce the bulk resistance slightly. Among the investigated
compositions, Li<sub>6.6</sub>La<sub>2.75</sub>Y<sub>0.25</sub>Zr<sub>1.6</sub>Ta<sub>0.4</sub>O<sub>12</sub> sintered at 1200 °C
exhibits a maximized room temperature total (bulk + grain boundary)
Li<sup>+</sup> conductivity of 4.36 × 10<sup>–4</sup> S
cm<sup>–1</sup> along with the improved ceramic density