Vapor-Phase Atomic-Controllable Growth of Amorphous Li<sub>2</sub>S for High-Performance Lithium–Sulfur Batteries

Abstract

Lithium–sulfur (Li–S) batteries hold great promise to meet the formidable energy storage requirements of future electrical vehicles but are prohibited from practical implementation by their severe capacity fading and the risks imposed by Li metal anodes. Nanoscale Li<sub>2</sub>S offers the possibility to overcome these challenges, but no synthetic technique exists for fine-tailoring Li<sub>2</sub>S at the nanoscale. Herein we report a vapor-phase atomic layer deposition (ALD) method for the atomic-scale-controllable synthesis of Li<sub>2</sub>S. Besides a comprehensive investigation of the ALD Li<sub>2</sub>S growth mechanism, we further describe the high performance of the resulting amorphous Li<sub>2</sub>S nanofilms as cathodes in Li–S batteries, achieving a stable capacity of ∼800 mA·h/g, nearly 100% Coulombic efficiency, and excellent rate capability. Nanoscale Li<sub>2</sub>S holds great potential for both bulk-type and thin-film high-energy Li–S batteries

    Similar works

    Full text

    thumbnail-image

    Available Versions