Protein Biomineralized Nanoporous Inorganic Mesocrystals with Tunable Hierarchical Nanostructures

Abstract

Mesocrystals with the symmetry defying morphologies and highly ordered superstructures composed of primary units are of particular interest, but the fabrication has proved extremely challenging. A novel strategy based on biomineralization approach for the synthesis of hematite mesocrystals is developed by using silk fibroin as a biotemplate. The resultant hematite mesocrystals are uniform, highly crystalline, and porous nanostructures with tunable size and morphologies by simply varying the concentration of the silk fibroin and iron­(III) chloride in this biomineralization system. In particular, we demonstrate a complex mesoscale biomineralization process induced by the silk fibroin for the formation of hematite mesocrystals. This biomimetic strategy features precisely tunable, high efficiency, and low-cost and opens up an avenue to access new novel functional mesocrystals with hierarchical structures in various practical applications

    Similar works

    Full text

    thumbnail-image

    Available Versions