Chain Dynamics on Crossing the Glass Transition: Nonequilibrium Effects and Recovery of the Temperature Dependence of the Structural Relaxation

Abstract

In this paper we report thermally stimulated depolarization current results on the chain and segmental dynamics of two monodisperse polyisoprenes accessing both dynamics at ultralow frequency range and exploring the relationship between segmental and chain time scales when crossing the glass transition. In this range, we have recorded experimental evidence of nonequilibrium effects on the slowest chain mode dynamics. The nonequilibrium effects seem to occur simultaneously for both chain and α-relaxation. Moreover, detailed analysis strongly indicates the recovery of an even T-dependence for the chain and α-relaxation dynamics on crossing glass transition and in the glassy state. The obtained results can be understood taking into account the different temperature dependences of the length scales involved in the segmental and chain relaxations

    Similar works

    Full text

    thumbnail-image

    Available Versions