White Light Emitting Polymers from a Luminogen with Local Polarity Induced Enhanced Emission

Abstract

Aggregation induced enhanced emission (AIEE) is considered as an important tool to circumvent the aggregation caused quenching (ACQ) effect in organic light emitting diodes (OLEDs). Charge trapping and surplus long wavelength electroluminescence is a cause of concern in single polymer based white OLEDs. However, the potential of luminogens with AIEE property as a credible tool to offset the above problems in white light emitting single polymer is not properly explored. In this study design, synthesis and spectral characterization of a polymerizable luminogen, (2<i>Z</i>,2′<i>Z</i>)-6,6′-(2,7-dibromo-9<i>H</i>-fluorene-9,9-diyl)­bis­(hexane-6,1-diyl)­bis­(2-cyano-3-(10-hexyl-10<i>H</i>-phenothiazin-3-yl)­acrylate­(FCPA) with AIEE property and its copolymers is presented. Lippert-Mataga studies showed that reduced local polarity caused by aliphatic chains in condensed state of FCPA resulted in AIEE property. The copolymers P­(FCPA-1) and P­(FCPA-0.5) with 1% and 0.5% FCPA moieties showed white electroluminescence and enhanced thin film photoluminescence that matched very closely. The superior performance of OLEDs is attributed to the presence of a phenothiazine group in FCPA that resulted in nearly equal electron and hole injection barriers

    Similar works

    Full text

    thumbnail-image

    Available Versions