In-Plane Aromaticity in Cycloparaphenylene Dications: A Magnetic Circular Dichroism and Theoretical Study

Abstract

The electronic structures of [8]­cyclo­para­phenylene dication ([8]­CPP<sup>2+</sup>) and radical cation ([8]­CPP<sup>•+</sup>) have been investigated by magnetic circular dichroism (MCD) spectroscopy, which enabled unambiguous discrimination between previously conflicting assignments of the UV–vis–NIR absorption spectral bands. Molecular orbital and nucleus-independent chemical shift (NICS) analysis revealed that [8]­CPP<sup>2+</sup> shows in-plane aromaticity with a (4<i>n</i> + 2) π-electron system (<i>n</i> = 7). This aromaticity appears to be the origin of the unusual stability of the dication. Theoretical calculations further suggested that not only [8]­CPP<sup>2+</sup> but also all [<i>n</i>]­CPP (<i>n</i> = 5–10) dications and dianions exhibit in-plane aromaticity

    Similar works

    Full text

    thumbnail-image

    Available Versions