An Antiferro-to-Ferromagnetic Transition in EuTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> Induced by Hydride Substitution

Abstract

We have prepared the oxyhydride perovskite EuTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> (<i>x</i> ≤ 0.3) by a low temperature CaH<sub>2</sub> reduction of pyrochlore Eu<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> and perovskite EuTiO<sub>3</sub>. The reduced EuTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> crystallizes in the ideal cubic perovskite (<i>Pm</i>3̅<i>m</i>), where O/H anions are randomly distributed. As a result of electron doping by the aliovalent anion exchange, the resistivity of EuTiO<sub>3–<i>x</i></sub>H<sub><i>x</i></sub> shows metallic temperature dependence. Moreover, an antiferromagnetic-to-ferromagnetic transition is observed even when a small amount of hydride (<i>x</i> ∼ 0.07) is introduced. The Curie temperature <i>T</i><sub>C</sub> of 12 K is higher than those of any other EuTiO<sub>3</sub>-derived ferromagnets. The ferromagnetism can be explained by the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between the Eu<sup>2+</sup> spins mediated by the itinerant Ti 3d electrons. The present study shows that controlling the oxide/hydride ratio is a versatile method to tune magnetic and transport properties

    Similar works

    Full text

    thumbnail-image

    Available Versions