Syntheses, Structural, Magnetic, and Electron Paramagnetic Resonance Studies of Monobridged Cyanide and Azide Dinuclear Copper(II) Complexes: Antiferromagnetic Superexchange Interactions

Abstract

The reactions of Cu­(ClO<sub>4</sub>)<sub>2</sub> with NaCN and the ditopic ligands <i>m</i>-bis­[bis­(1-pyrazolyl)­methyl]­benzene (<b>L</b><sub><i><b>m</b></i></sub>) or <i>m</i>-bis­[bis­(3,5-dimethyl-1-pyrazolyl)­methyl]­benzene (<b>L</b><sub><i><b>m</b></i></sub>*) yield [Cu<sub>2</sub>(μ-CN)­(μ-<b>L</b><sub><i><b>m</b></i></sub>)<sub>2</sub>]­(ClO<sub>4</sub>)<sub>3</sub> (<b>1</b>) and [Cu<sub>2</sub>(μ-CN)­(μ-<b>L</b><sub><i><b>m</b></i></sub><b>*</b>)<sub>2</sub>]­(ClO<sub>4</sub>)<sub>3</sub> (<b>3</b>). In both, the cyanide ligand is linearly bridged (μ-1,2) leading to a separation of the two copper­(II) ions of ca. 5 Å. The geometry around copper­(II) in these complexes is distorted trigonal bipyramidal with the cyanide group in an equatorial position. The reaction of [Cu<sub>2</sub>(μ-F)­(μ-<b>L</b><sub><i><b>m</b></i></sub>)<sub>2</sub>]­(ClO<sub>4</sub>)<sub>3</sub> and (CH<sub>3</sub>)<sub>3</sub>SiN<sub>3</sub> yields [Cu<sub>2</sub>(<i>μ-</i>N<sub>3</sub>)­(<i>μ-</i><b>L</b><sub><i><b>m</b></i></sub>)<sub>2</sub>]­(ClO<sub>4</sub>)<sub>3</sub> (<b>2</b>), where the azide adopts end-on (μ-1,1) coordination with a Cu–N–Cu angle of 138.0° and a distorted square pyramidal geometry about the copper­(II) ions. Similar chemistry in the more sterically hindered <b>L</b><sub><i><b>m</b></i></sub>* system yielded only the coordination polymer [Cu<sub>2</sub>(<i>μ-</i><b>L</b><sub><i><b>m</b></i></sub>*)­(<i>μ-</i>N<sub>3</sub>)<sub>2</sub>­(N<sub>3</sub>)<sub>2</sub>]. Attempts to prepare a dinuclear complex with a bridging iodide yield the copper­(I) complex [Cu<sub>5</sub>(<i>μ-</i>I<sub>4</sub>)­(μ-<b>L</b><sub><i><b>m</b></i></sub>*)<sub>2</sub>]­I<sub>3</sub>. The complexes <b>1</b> and <b>3</b> show strong antiferromagnetic coupling, −<i>J</i> = 135 and 161 cm<sup>–1</sup>, respectively. Electron paramagnetic resonance (EPR) studies coupled with density functional theory (DFT) calculations show that the exchange interaction is transmitted through the d<sub><i>z</i><sup>2</sup></sub> and the bridging ligand s and p<sub><i>x</i></sub> orbitals. High field EPR studies confirmed the d<sub><i>z</i><sup>2</sup></sub> ground state of the copper­(II) ions. Single-crystal high-field EPR has been able to definitively show that the signs of <i>D</i> and <i>E</i> are positive. The zero-field splitting is dominated by the anisotropic exchange interactions. Complex <b>2</b> has −<i>J</i> = 223 cm<sup>–1</sup> and DFT calculations indicate a predominantly d<sub><i>x</i><sup>2</sup>–y<sup>2</sup></sub> ground state

    Similar works

    Full text

    thumbnail-image

    Available Versions