Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers

Abstract

Heteroatom-doped porous carbons are emerging as platforms for use in a wide range of applications including catalysis, energy storage, and gas separation or storage, among others. The use of high activation temperatures and heteroatom multiple-source precursors remain great challenges, and this study aims to addresses both issues. A series of highly porous N-doped carbon (CPC) materials was successfully synthesized by chemical activation of benzimidazole-linked polymers (BILPs) followed by thermolysis under argon. The high temperature synthesized CPC-700 reaches surface area and pore volume as high as 3240 m<sup>2</sup> g<sup>–1</sup> and 1.51 cm<sup>3</sup> g<sup>–1</sup>, respectively, while low temperature activated CPC-550 exhibits the highest ultramicropore volume of 0.35 cm<sup>3</sup> g<sup>–1</sup>. The controlled activation process endows CPCs with diverse textural properties, adjustable nitrogen content (1–8 wt %), and remarkable gas sorption properties. In particular, exceptionally high CO<sub>2</sub> uptake capacities of 5.8 mmol g<sup>–1</sup> (1.0 bar) and 2.1 mmol g<sup>–1</sup> (0.15 bar) at ambient temperature were obtained for materials prepared at 550 °C due to a combination of a high level of N-doping and ultramicroporosity. Furthermore, CPCs prepared at higher temperatures exhibit remarkable total uptake for CO<sub>2</sub> (25.7 mmol g<sup>–1</sup> at 298 K and 30 bar) and CH<sub>4</sub> (20.5 mmol g<sup>–1</sup> at 298 K and 65 bar) as a result of higher total micropores and small mesopores volume. Interestingly, the N sites within the imidazole rings of BILPs are intrinsically located in pyrrolic/pyridinic positions typically found in N-doped carbons. Therefore, the chemical and physical transformation of BILPs into CPCs is thermodynamically favored and saves significant amounts of energy that would otherwise be consumed during carbonization processes

    Similar works

    Full text

    thumbnail-image

    Available Versions