Optically Abrupt Localized Surface Plasmon Resonances in Si Nanowires by Mitigation of Carrier Density Gradients

Abstract

Spatial control of carrier density is critical for engineering and exploring the interactions of localized surface plasmon resonances (LSPRs) in nanoscale semiconductors. Here, we couple <i>in situ</i> infrared spectral response measurements and discrete dipole approximation (DDA) calculations to show the impact of axially graded carrier density profiles on the optical properties of mid-infrared LSPRs supported by Si nanowires synthesized by the vapor–liquid–solid technique. The region immediately adjacent to each intentionally encoded resonator (<i>i.e.</i>, doped segment) can exhibit residual carrier densities as high as 10<sup>20</sup> cm<sup>–3</sup>, which strongly modifies both near- and far-field behavior. Lowering substrate temperature during the spacer segment growth reduces this residual carrier density and results in a spectral response that is indistinguishable from nanowires with ideal, atomically abrupt carrier density profiles. Our experiments have important implications for the control of near-field plasmonic phenomena in semiconductor nanowires, and demonstrate methods for determining and controlling axial dopant profile in these systems

    Similar works

    Full text

    thumbnail-image

    Available Versions