ZnGa<sub>2–<i>x</i></sub>In<sub><i>x</i></sub>S<sub>4</sub> (0 ≤ <i>x</i> ≤ 0.4) and Zn<sub>1–2<i>y</i></sub>(CuGa)<sub><i>y</i></sub>Ga<sub>1.7</sub>In<sub>0.3</sub>S<sub>4</sub> (0.1 ≤ <i>y</i> ≤ 0.2): Optimize Visible Light Photocatalytic H<sub>2</sub> Evolution by Fine Modulation of Band Structures

Abstract

Band structure engineering is an efficient technique to develop desired semiconductor photocatalysts, which was usually carried out through isovalent or aliovalent ionic substitutions. Starting from a UV-activated catalyst ZnGa<sub>2</sub>S<sub>4</sub>, we successfully exploited good visible light photocatalysts for H<sub>2</sub> evolution by In<sup>3+</sup>-to-Ga<sup>3+</sup> and (Cu<sup>+</sup>/Ga<sup>3+</sup>)-to-Zn<sup>2+</sup> substitutions. First, the bandgap of ZnGa<sub>2–<i>x</i></sub>­In<sub><i>x</i></sub>S<sub>4</sub> (0 ≤ <i>x</i> ≤ 0.4) decreased from 3.36 to 3.04 eV by lowering the conduction band position. Second, Zn<sub>1–2<i>y</i></sub>(CuGa)<sub><i>y</i></sub>­Ga<sub>1.7</sub>In<sub>0.3</sub>S<sub>4</sub> (<i>y</i> = 0.1, 0.15, 0.2) provided a further and significant red-shift of the photon absorption to ∼500 nm by raising the valence band maximum and barely losing the overpotential to water reduction. Zn<sub>0.7</sub>Cu<sub>0.15</sub>­Ga<sub>1.85</sub>In<sub>0.3</sub>S<sub>4</sub> possessed the highest H<sub>2</sub> evolution rate under pure visible light irradiation using S<sup>2–</sup> and SO<sub>3</sub><sup>2–</sup> as sacrificial reagents (386 μmol/h/g for the noble-metal-free sample and 629 μmol/h/g for the one loaded with 0.5 wt % Ru), while the binary hosts ZnGa<sub>2</sub>S<sub>4</sub> and ZnIn<sub>2</sub>S<sub>4</sub> (synthesized using the same procedure) show 0 and 27.9 μmol/h/g, respectively. The optimal apparent quantum yield reached to 7.9% at 500 nm by tuning the composition to Zn<sub>0.6</sub>Cu<sub>0.2</sub>­Ga<sub>1.9</sub>In<sub>0.3</sub>S<sub>4</sub> (loaded with 0.5 wt % Ru)

    Similar works

    Full text

    thumbnail-image

    Available Versions