Decoding the Mobility and Time Scales of Protein Loops

Abstract

The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast loops with correlation times <10 ns, slow loops with correlation times between 10 and 500 ns, and loops that are static over the course of the whole trajectory. Chemical and biophysical loop descriptors, such as amino-acid sequence, average 3D structure, charge distribution, hydrophobicity, and local contacts were used to develop and parametrize the ToeLoop algorithm for the prediction of the flexibility and motional time scale of every protein loop, which is also implemented as a public Web server (http://spin.ccic.ohio-state.edu/index.php/loop). The results demonstrate that loop dynamics with their time scales can be predicted rapidly with reasonable accuracy, which will allow the screening of average protein structures to help better understand the various roles loops can play in the context of protein–protein interactions and binding

    Similar works

    Full text

    thumbnail-image

    Available Versions