Increasing <i>para</i>-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM‑5 Catalyst

Abstract

We report a ZSM-5 based catalyst with surface modification of SiO<sub>2</sub> to increase the selectivity of <i>para</i>-xylene (PX) in xylene (X) in the methanol-to-aromatics process. The effect of acid strength and acid amount in HZSM-5, Zn/P/ZSM-5, and Zn/P/Si/ZSM-5 on the catalytic performance, including methanol conversion, aromatic yield, and PX selectivity, were studied. The total acid strength and acid amount of the catalyst were crucial for high methanol conversion (around 100%) and high yield of aromatics (>60%), whereas weak external acid sites present in a small amount played an important role in increasing the PX selectivity (in the X isomers) from the usual 23–24% to 89.6%. The results validated the use of a catalyst having a core with strong acid sites in a large amount and an external shell with weak acid sites in a small amount. The contribution of the external surface reaction, including alkylation, isomerization, and dealkylation, to the PX selectivity was evaluated by using PX or <i>ortho</i>-X separately as feedstock. A Zn/P/Si/ZSM-5 catalyst worked well in continuous reaction/catalyst-regeneration cycles, and it also converted recycled toluene into PX by an alkylation route

    Similar works

    Full text

    thumbnail-image

    Available Versions