Tunable Luminescent Properties and Concentration-Dependent, Site-Preferable Distribution of Eu<sup>2+</sup> Ions in Silicate Glass for White LEDs Applications

Abstract

The design of luminescent materials with widely and continuously tunable excitation and emission is still a challenge in the field of advanced optical applications. In this paper, we reported a Eu<sup>2+</sup>-doped SiO<sub>2</sub>-Li<sub>2</sub>O-SrO-Al<sub>2</sub>O<sub>3</sub>-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub> (abbreviated as SLSAKP:Eu<sup>2+</sup>) silicate luminescent glass. Interestingly, it can give an intense tunable emission from cyan (474 nm) to yellowish-green (538 nm) simply by changing excitation wavelength and adjusting the concentration of Eu<sup>2+</sup> ions. The absorption spectra, photoluminescence excitation (PLE) and emission (PL) spectra, and decay curves reveal that there are rich and distinguishable local cation sites in SLSAKP glasses and that Eu<sup>2+</sup> ions show preferable site distribution at different concentrations, which offer the possibility to engineer the local site environment available for Eu<sup>2+</sup> ions. Luminescent glasses based color and white LED devices were successfully fabricated by combining the as-synthesized glass and a 385 nm n-UV LED or 450 nm blue LED chip, which demonstrates the potential application of the site engineering of luminescent glasses in advanced solid-state lighting in the future

    Similar works

    Full text

    thumbnail-image

    Available Versions