Structural Insight into an Alzheimer’s Brain-Derived Spherical Assembly of Amyloid β by Solid-State NMR

Abstract

Accumulating evidence suggests that various neuro­degenerative diseases, including Alzheimer’s disease (AD), are linked to cytotoxic diffusible aggregates of amyloid proteins, which are metastable intermediate species in protein misfolding. This study presents the first site-specific structural study on an intermediate called amylo­spheroid (ASPD), an AD-derived neurotoxin composed of oligomeric amyloid-β (Aβ). Electron microscopy and immunological analyses using ASPD-specific “conformational” antibodies established synthetic ASPD for the 42-residue Aβ(1–42) as an excellent structural/morphological analogue of native ASPD extracted from AD patients, the level of which correlates with the severity of AD. <sup>13</sup>C solid-state NMR analyses of approximately 20 residues and interstrand distances demonstrated that the synthetic ASPD is made of a homogeneous single conformer containing parallel β-sheets. These results provide profound insight into the native ASPD, indicating that Aβ is likely to self-assemble into the toxic intermediate with β-sheet structures in AD brains. This approach can be applied to various intermediates relevant to amyloid diseases

    Similar works

    Full text

    thumbnail-image

    Available Versions