Shuttling Catalyst for Living Radical Miniemulsion Polymerization: Thermoresponsive Ligand for Efficient Catalysis and Removal

Abstract

In this report, we demonstrate the use of a thermoresponsive ligand for the ruthenium-catalyzed living radical polymerization of butyl methacrylate (BMA) in miniemulsion. A phosphine-ligand-functionalized polyethylene glycol chain (PPEG) in conjunction with a Cp*-based ruthenium complex (Cp*: pentamethylcyclopentadienyl) provided thermoresponsive character as well as catalysis for living polymerization: the complex migrated from the water phase to the oil phase for polymerization upon heating and then migrated from the oil to water phase when the temperature was decreased to quench polymerization. Consequently, simple treatment (i.e., water washing or methanol reprecipitation) yielded metal-free polymeric particles containing less than 10 μg/g (by ICP-AES) of ruthenium residue

    Similar works

    Full text

    thumbnail-image

    Available Versions