High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

Abstract

Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with a power conversion efficiency (PCE) as high as 13%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiO<sub>2</sub>/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with a PCE as high as 8.1% that are robust under mechanical stress. In this case, a photonic curing technique was used to achieve a highly conductive TiO<sub>2</sub> layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appear very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells

    Similar works

    Full text

    thumbnail-image

    Available Versions