Tensor Hypercontraction Second-Order Møller–Plesset Perturbation Theory: Grid Optimization and Reaction Energies

Abstract

We have recently introduced the tensor hypercontraction (THC) method for electronic structure, including MP2. Here, we present an algorithm for THC-MP2 that lowers the memory requirements as well as the prefactor while maintaining the formal quartic scaling that we demonstrated previously. We also describe a procedure to optimize quadrature grids used in grid-based least-squares (LS) THC-MP2. We apply this algorithm to generate grids for first-row atoms with less than 100 points/atom while incurring negligible errors in the computed energies. We benchmark the LS-THC-MP2 method using optimized grids for a wide variety of tests sets including conformational energies and reaction barriers in both the cc-pVDZ and cc-pVTZ basis sets. These tests demonstrate that the THC methodology is not limited to small basis sets and that it incurs negligible errors in both absolute and relative energies

    Similar works

    Full text

    thumbnail-image

    Available Versions