Inducing Stem Cell Myogenesis Using NanoScript

Abstract

Transcription factors (TFs) are multidomain proteins that play a critical role in orchestrating stem cell differentiation, but several limitations hinder the full potential of TF-based gene regulation. Here we report a unique strategy to emulate TFs and differentiate stem cells in a nonviral approach using an artificial, nanoparticle-based transcription factor called NanoScript. The NanoScript platform consists of a gold nanoparticle functionalized with small molecules that mimic the various domains of TFs. As a result, NanoScript mimics the function and structure of TF proteins. Specifically, NanoScript was designed to regulate muscle cell differentiation by targeting myogenic regulatory factors (MRFs), which play an important role in inducing myogenesis. This NanoScript-MRF is stable in physiological environments, localizes within the nucleus, induces differentiation of adipose-derived mesenchymal stem cells into mature muscle cells in 7 days, and is naturally excreted from induced muscle cells. As such, NanoScript represents a safe and powerful tool for applications requiring gene manipulation

    Similar works

    Full text

    thumbnail-image

    Available Versions