External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4′‑<i>N</i>,<i>N</i>‑Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films

Abstract

The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4′-<i>N</i>,<i>N</i>-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly­(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm<sup>–1</sup> enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck–Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment

    Similar works

    Full text

    thumbnail-image

    Available Versions