<i>In vivo</i> use of the light-inducible gene expression system.

Abstract

<p>(A) Schematic representation of the transgenic construct carrying the total light inducible LexA transcription system. T2A ribosomal skipping signals were added to the C-terminus of CIBN::LexA and mcherry to maintain stoichiometry of the required proteins. (B, C) Induction of GFP expression using the light switchable system in embryos (B) and adults (C). GMR18G07-Gal4 and orco-Gal4 were used to drive the transcription system in embryos and in adults respectively. GFP expression was seen in neuroblast cells in embryos or antennal lobe neurons in adults after blue light illumination (embryo: 4 hours; 474nm, ~1.1mWcm<sup>-2</sup>; adult ~16 hours, 474nm, ~2.5mWcm<sup>-2</sup>). (D) Addition of a Gal80 feedback mechanism minimizes basal expression without illumination. <i>elav</i><sup><i>c155</i></sup>-Gal4 were used to drive the transcription system in adults. Flies were illuminated with blue light for ~16 hours or kept in constant darkness. The incorporation of LexAOP2-Gal80 dramatically lowered the basal GFP expression in control without blue light illumination. This construct also greatly reduced the expression of the transcription system marked by mcherry. The reduction in mcherry expression was observed in samples with the LexAOP2-Gal80 feedback mechanism even if the exposure time was 6 times longer than that of samples without the LexAOP2-Gal80 (Scale bar = 100μm).</p

    Similar works

    Full text

    thumbnail-image

    Available Versions