Investigation of fatty acid transport across cellular and peroxisomal membranes

Abstract

Der Mechanismus, der den Transport von freien Fettsäuren durch die Plasmamembran vermittelt, ist trotz intensiver Forschung und einer Vielzahl von Publikationen weiterhin unaufgeklärt. Im Rahmen dieser Arbeit sind wir der Frage nachgegangen, ob Acyl-CoA-Synthetasen am Fettsäuretransport in Saccharomyces cerevisiae beteiligt sind. In früheren Studien konnten wir zeigen, dass die kombinierte Deletion der Acyl-CoA-Synthetasen FAA1 und FAA4 in YB332 zu einem Fettsäuresekretions-Phänotyp führt, der durch einen massiven Export von freien Fettsäuren während der exponentiellen Phase und einen Re-Import von freien Fettsäuren während der stationären Phase charakterisiert ist. Für die Durchführung weiterer Transportstudien wurden zusätzlich in der Doppelmutante faa1Δfaa4Δ alle anderen bekannten Acyl-CoA-Synthetasen inaktiviert. Unsere Ergebnisse zeigten, dass der Transport durch die Plasmamembran ohne jegliche Acyl-CoA-Synthetase-Aktivität stattfinden kann. Die Richtung des Transportes von freien Fettsäuren ist umkehrbar und wird durch den metabolischen Zustand der Zellen aktiv reguliert. Dabei existiert anscheinend ein Kontrollmechanismus, der bei einer drastischen Änderung der Zusammensetzung des Fettsäure-Pools in den Zellen einen aktiven Export der Fettsäuren initiiert. Hingegen wird der Import von exogenen Fettsäuren durch das Fehlen anderer Kohlenstoffquellen, also einem Hungersignal, im Stadium der stationären Phase ausgelöst. Im Gegensatz zum Fettsäuretransport durch die Plasmamembran ist der Transport von Fettsäuren in das peroxisomale Lumen im Detail besser verstanden. In Hefen und Pflanzen wurden peroxisomale ABC-Transporter identifiziert, die eine essentielle Funktion bei der Aufnahme von Fettsäuren im Zuge der β-Oxidation haben. Trotz vergleichbarer Komponenten scheint sich der Mechanismus des Fettsäure-Imports in Peroxisomen der Pflanzen grundlegend von dem in S. cerevisiae zu unterscheiden. Im Rahmen dieser Arbeit konnte gezeigt werden, dass der ABC-Transporter Pat1p-Pat2p aus Hefe nicht durch den pflanzlichen ABC-Transporter PXA1 funktional zu ersetzen ist. Erst die kombinierte Expression der pflanzlichen Proteine PXA1 und LACS7 führte zu einer erfolgreichen Komplementation der Doppelmutante pat1Δfaa2Δ. Der Mechanismus des Fettsäure-Imports in Peroxisomen der Pflanzen scheint sich demnach grundlegend von dem in S. cerevisiae zu unterscheiden. Zusätzliche Erkenntnisse über den Ablauf von Transport der Fettsäuren durch die peroxisomale Membran und anschließender Metabolisierung durch die β-Oxidation haben wir durch die Manipulation des peroxisomalen Acyl-CoA-Pools in S. cerevisiae gewonnen. Die kombinierte Deletion der peroxisomalen Acyl-CoA-Thioesterase TES1 und der peroxisomalen Acyl-CoA-Synthetase FAA2 in YB332 führte zu einem deutlichen Phänotyp. Bei dieser Mutante wurde weder auf Minimalmedium mit Ölsäure noch auf Minimalmedium ohne Ölsäure Wachstum nachgewiesen. Außerdem wurde ein drastisches Absinken der Konzentration des zellulären Acyl-CoA-Pools beobachtet. Unsere Daten belegen somit ein Zusammenwirken von Tes1p und Faa2p, die gemeinsam das Verhältnis von freiem CoA zu Acyl-CoA im Peroxisom zu regulieren scheinen. Interessanterweise konnte durch die zusätzliche Deletion des peroxisomalen ABC-Transporters PAT1 der Phänotyp teilweise aufgehoben werden. Demnach wird eine Destabilisierung des CoA/Acyl-CoA-Verhältnisses durch die Verhinderung des Imports von Acyl-CoA in die Peroxisomen unterbunden. Unsere Daten zeigen somit erstmals, dass ein fehlgeleiteter peroxisomaler Fettsäurestoffwechsel dramatische Auswirkungen auf den Metabolismus der gesamten Zelle erlangen kann. Ein weiterer Aspekt des peroxisomalen Fettsäurestoffwechsels wurde in Pflanzen untersucht. Über die Funktion des ABC-Transporters PXA1 in Arabidopsis thaliana während der vegetativen Wachstumsphase ist wenig bekannt. In dieser Arbeit wurde ein durch eine verlängerte Dunkelphase induzierter Phänotyp der pxa1-Mutante untersucht. Eine Verlängerung der Dunkelphase führte bei diesen Pflanzen zum vollständigen Absterben, während die Wildtyp-Pflanzen zu diesem Zeitpunkt keine Symptome zeigten. Längere Dunkelphasen führten zu massiven Beschädigungen der Membransysteme. Eine massive Welke setzte trotz ausreichender Wasserversorgung ein. Unsere Studien zeigten, dass TAG unter den Bedingungen einer langanhaltenden Dunkelphase offensichtlich als Depot für Fettsäuren dient, die letztendlich für den Abbau durch die β-Oxidation vorgesehen sind. Die Kombination von β-Oxidation und TAG-Synthese führt dementsprechend zu einem konstant niedrigen Fettsäurespiegel im Wildtyp. In der pxa1-Mutante entfällt der Abbau der Fettsäuren via β-Oxidation und es erfolgt ein deutlicher Anstieg der Konzentration der freien Fettsäuren. Der Detergens-Charakter der freien Fettsäuren führt zu gravierende strukturelle Schäden der Chloroplasten und anschließendem Zelltod. Da dieser Phänotyp durch Zugabe exogener Saccharose unterdrückt werden kann, postulieren wir, dass die Freisetzung von Fettsäuren als Kompensationsmechanismus bei Engpässen der Energieversorgung während langanhaltender Dunkelheit dient. Demnach spielt die β-Oxidation in adulten Pflanzen eine essentielle Rolle für die Aufrechthaltung der Energieversorgung bei einer verlängerten Dunkelphase

    Similar works

    Full text

    thumbnail-image