Mitochondria-Directed Fluorescent Probe for the Detection of Hydrogen Peroxide near Mitochondrial DNA

Abstract

It is important to detect hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) near mitochondrial DNA (mtDNA) because mtDNA is more prone to oxidative attack than nuclear DNA (nDNA). In this study, a mitochondria-targeted fluorescence probe, <b>pep3-NP1</b>, has been designed and synthesized. The probe contains a DNA-binding peptide, a H<sub>2</sub>O<sub>2</sub> fluorescence reporter, and a positively charged red emissive styryl dye to facilitate accumulation in mitochondria. Due to groove binding of the peptide with DNA, the styryl dye of <b>pep3-NP1</b> intercalated into the bases of DNA, leading to an increase in red fluorescence intensity (centered at 646 nm) and quantum yield. In this case, <b>pep3-NP1</b> was a turn-on probe for labeling DNA. Subcellular locations of <b>pep3-NP1</b> and MitoTracker suggested that <b>pep3-NP1</b> mostly accumulated in the mitochondria of live cells. Namely, as an intracellular DNA marker, <b>pep3-NP1</b> bound to mtDNA. In the presence of H<sub>2</sub>O<sub>2</sub>, <b>pep3-NP1</b> emitted green fluorescence (centered at 555 nm). Thus, the ratio of green with red fluorescence of <b>pep3-NP1</b> was suitable to reflect the change of the H<sub>2</sub>O<sub>2</sub> level near mtDNA in living cells. The detecting limit for H<sub>2</sub>O<sub>2</sub> was estimated at 2.9 and 5.0 μM in vitro and in cultured cells, respectively. The development of <b>pep3-NP1</b> could help in studies to protect mtDNA from oxidative stress

    Similar works

    Full text

    thumbnail-image

    Available Versions