Sputtering Yields for Mixtures of Organic Materials Using Argon Gas Cluster Ions

Abstract

The sputtering yield volumes of binary mixtures of Irganox 1010 with either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine (FMOC) have been measured for 5 keV Ar<sub>2000</sub><sup>+</sup> ions incident at 45° to the surface normal. The sputtering yields are determined from the doses to sputter through various compositions of 100 nm thick, intimately mixed, layers. Because of matrix effects, the profiles for secondary ions are distorted, and profile shifts in depth of 15 nm are observed leading to errors above 20% in the deduced sputtering yield. Secondary ions are selected to avoid this. The sputtering yield volumes for the mixtures are shown to be lower than those deduced from a linear interpolation from the pure materials. This is shown to be consistent with a simple model involving the changing energy absorbed for the sputtering of intimate mixtures. Evidence to support this comes from the secondary ion data for pairs of the different molecules. Both binary mixtures behave similarly, but matrix effects are stronger for the Irganox 1010/FMOC system

    Similar works

    Full text

    thumbnail-image

    Available Versions