Iridium-Catalyzed Asymmetric Hydrogenation with Simple Cyclohexane-Based P/S Ligands: <i>In Situ</i> HP-NMR and DFT Calculations for the Characterization of Reaction Intermediates

Abstract

We report a reduced but structurally valuable phosphite/phosphinite-thioether ligand library for the Ir-hydrogenation of 40 minimally functionalized alkenes, including relevant examples with poorly coordinative groups. We found that enantiomeric excesses are mainly dependent on the substrate structure and on some ligand parameters (i.e., the type of thioether/phosphorus moieties and the configuration of the phosphite group), whereas the substituents of the biaryl phosphite moiety had little impact. By tuning the ligand parameters we were able to find highly selective catalysts for a range of substrates (ee’s up to 99%). These phosphite/phosphinite-thioether ligands have a simple backbone and thus yield simple NMR spectra that reduce signal overlap and facilitate the identification of relevant intermediates. Therefore, by combining HP-NMR spectroscopy and theoretical studies, we were also able to identify the catalytically competent Ir-dihydride alkene species, which made it possible to explain the enantioselectivity obtained

    Similar works

    Full text

    thumbnail-image

    Available Versions