Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells

Abstract

We propose a spectrum-dependent mechanism for the oxidation of 2,2′,7,7′-tetrakis­(<i>N</i>,<i>N</i>-di-<i>p</i>-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD) with bis­(trifluoromethane)­sulfonimide lithium salt (LiTFSI), which is commonly used in perovskite solar cells as the hole transport layer. The perovskite layer plays different roles in the Spiro-OMeTAD oxidization for various spectral ranges. The effect of oxidized Spiro-OMeTAD on the solar cell performance was observed and characterized. With the initial long-wavelength illumination (>450 nm), the charge recombination at the TiO<sub>2</sub>/Spiro-OMeTAD interface was increased due to the higher amount of the oxidized Spiro-OMeTAD. On the other hand, the increased conductivity of the Spiro-OMeTAD layer and enhanced charge transfer at the Au/Spiro-OMeTAD interface facilitated the solar cell performance

    Similar works

    Full text

    thumbnail-image

    Available Versions