Interception and Characterization of Catalyst Species in Rhodium Bis(diazaphospholane)-Catalyzed Hydroformylation of Octene, Vinyl Acetate, Allyl Cyanide, and 1‑Phenyl-1,3-butadiene

Abstract

In the absence of H<sub>2</sub>, reaction of [Rh­(H) (CO)<sub>2</sub>(BDP)] [BDP = bis­(diazaphospholane)] with hydroformylation substrates vinyl acetate, allyl cyanide, 1-octene, and <i>trans</i>-1-phenyl-1,3-butadiene at low temperatures and pressures with passive mixing enables detailed NMR spectroscopic characterization of rhodium acyl and, in some cases, alkyl complexes of these substrates. For <i>trans</i>-1-phenyl-1,3-butadiene, the stable alkyl complex is an η<sup>3</sup>-allyl complex. Five-coordinate acyl dicarbonyl complexes appear to be thermodynamically preferred over the four-coordinate acyl monocarbonyls at low temperatures and one atmosphere of CO. Under noncatalytic (i.e., no H<sub>2</sub> present) reaction conditions, NMR spectroscopy reveals the kinetic and thermodynamic selectivity of linear and branched acyl dicarbonyl formation. Over the range of substrates investigated, the kinetic regioselectivity observed at low temperatures under noncatalytic conditions roughly predicts the regioselectivity observed for catalytic transformations at higher temperatures and pressures. Thus, kinetic distributions of off-cycle acyl dicarbonyls constitute reasonable models for catalytic selectivity. The Wisconsin high-pressure NMR reactor (WiHP-NMRR) enables single-turnover experiments with active mixing; such experiments constitute a powerful strategy for elucidating the inherent selectivity of acyl formation and acyl hydrogenolysis in hydroformylation reactions

    Similar works

    Full text

    thumbnail-image

    Available Versions