Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals

Abstract

Organolead bromide CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> perovskite nanocrystals (PNCs) with green photoluminescence (PL) have been synthesized using two different aliphatic ammonium capping ligands, octylammonium bromide (OABr) and octadecylammonium bromide (ODABr), resulting in PNC–OABr and PNC–ODABr, respectively. Structural studies by X-ray diffraction (XRD) and transmission electron microscopy (TEM) determined that the PNCs exhibit cubic phase crystal structure with average particle size dependent on capping ligand (3.9 ± 1.0 nm for PNC–OABr and 6.5 ± 1.4 nm for PNC–ODABr). The exciton dynamics of PNCs were investigated using femtosecond transient absorption (TA) techniques and singular value decomposition global fitting (SVD-GF), which revealed nonradiative recombination on the picosecond time scale mediated by surface trap states for both types of PNCs. The PL lifetime of the PNCs was measured by time-resolved photoluminescence (TRPL) spectroscopy and fit with integrated SVD-GF to determine the radiative as well as nonradiative lifetimes on the nanosecond time scale. Finally, a simple model is proposed to explain the optical and dynamic properties of the PNCs with emphasis on major exciton relaxation or electron–hole recombination processes. The results indicate that the use of capping ligand OABr resulted in PNCs with a high PL quantum yield (QY) of ∼20% (vs fluorescein, 95%), which have interesting optical properties and are promising for potential applications including photovoltaics, detectors, and light-emitting diodes (LEDs)

    Similar works

    Full text

    thumbnail-image

    Available Versions