Additional file 1: Figure S1. of Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation

Abstract

(Related to Fig. 1) Ezh2 expression is lost from E10.5. Figure S2. (related to Fig. 2) Ezh2 ablation results in increased neurogenesis. Figure S3. (related to Fig. 3) Gene ontology analysis. Figure S4. (related to Fig. 4) Expression levels of forebrain transcription factors in Ezh2 cko midbrain do not reach those of wildtype forebrain. Figure S5. (related to Fig. 4) Incomplete Cre-mediated recombination in the dorsal midbrain. Figure S6. (related to Fig. 5) Ezh2 ablation does not affect early midbrain patterning. Figure S7. (related to Fig. 6) Pax6 does not directly repress Pax3 and Pax7. Table S1. (related to Fig. 3) Differentially expressed genes of E10.5 control and Ezh2 cko midbrains. Table S2. Primers used for the generation of in situ probes by in vitro transcription. Table S3. Primers used for quantitative real-time PCR on embryo tissue samples. Table S4. Primers used for quantitative real-time PCR on DNA fragments isolated in H3K27me3 ChIP assay. (PDF 4989 kb

    Similar works

    Full text

    thumbnail-image

    Available Versions