Diffusion Coefficients from <sup>13</sup>C PGSE NMR MeasurementsFluorine-Free Ionic Liquids with the DCTA<sup>–</sup> Anion

Abstract

Pulsed-field gradient spin–echo (PGSE) NMR is a widely used method for the determination of molecular and ionic self-diffusion coefficients. The analysis has thus far been limited largely to <sup>1</sup>H, <sup>7</sup>Li, <sup>19</sup>F, and <sup>31</sup>P nuclei. This limitation handicaps the analysis of materials without these nuclei or for which these nuclei are insufficient for complete characterization. This is demonstrated with a class of ionic liquids (or ILs) based on the nonfluorinated anion 4,5-dicarbonitrile-1,2,3-triazole (DCTA<sup>–</sup>). It is demonstrated here that <sup>13</sup>C-PGSE NMR can be used to both verify the diffusion coefficients obtained from other nuclei, as well as characterize materials that lack commonly scrutinized nuclei  all without the need for specialized NMR methods

    Similar works

    Full text

    thumbnail-image

    Available Versions