RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method

Abstract

The second-order Møller–Plesset perturbation theory (MP2) gradient using resolution of the identity approximation (RI-MP2 gradient) was combined with the fragment molecular orbital (FMO) method to evaluate the gradient including electron correlation for large molecules. In this study, we adopted a direct implementation of the RI-MP2 gradient, in which a characteristic feature of the FMO scheme was utilized. Test calculations with a small peptide presented a computational advantage of the RI-MP2 gradient over the canonical MP2 gradient. In addition, it was shown that the error of the RI-MP2 gradient, caused by RI approximation, was negligible. As an illustrative example, we performed gradient calculations for two biomoleculesa prion protein with GN8 and a human immunodeficiency virus type 1 (HIV1) protease with lopinavir (LPV). These calculations demonstrated that the gradient including the correlation effect could be evaluated with only about twice the computational effort of the Hartree–Fock (HF) gradient

    Similar works

    Full text

    thumbnail-image

    Available Versions