p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO<sub>2</sub> Nanoplates with Saturation Photovoltages Exceeding 460 mV

Abstract

Exploring new p-type semiconductor nanoparticles alternative to the commonly used NiO is crucial for p-type dye-sensitized solar cells (p-DSSCs) to achieve higher open-circuit voltages (<i>V</i><sub>oc</sub>). Here we report the first application of delafossite CuGaO<sub>2</sub> nanoplates for p-DSSCs with high photovoltages. In contrast to the dark color of NiO, our CuGaO<sub>2</sub> nanoplates are white. Therefore, the porous films made of these nanoplates barely compete with the dye sensitizers for visible light absorption. This presents an attractive advantage over the NiO films commonly used in p-DSSCs. We have measured the dependence of <i>V</i><sub>oc</sub> on the illumination intensity to estimate the maximum obtainable <i>V</i><sub>oc</sub> from the CuGaO<sub>2</sub>-based p-DSSCs. Excitingly, a saturation photovoltage of 464 mV has been observed when a polypyridyl Co<sup>3+/2+</sup>(dtb-bpy) electrolyte was used. Under 1 Sun AM 1.5 illumination, a <i>V</i><sub>oc</sub> of 357 mV has been achieved. These are among the highest values that have been reported for p-DSSCs

    Similar works

    Full text

    thumbnail-image

    Available Versions