Characterization of Middle-Temperature Gasification Coal Tar. Part 2: Neutral Fraction by Extrography Followed by Gas Chromatography–Mass Spectrometry and Electrospray Ionization Coupled with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Abstract

A commercial lignite gasification-derived middle-temperature coal tar (MTCT) was subjected to acid–base extraction to obtain acidic, basic, and neutral fractions. The neutral fraction was characterized by mass spectrometry (MS) for hydrocarbon-group-type analysis and further fractionated by extrography into six subfractions, which were characterized by gas chromatography–mass spectrometry (GC–MS). Saturate, aromatic, and resin fractions of the neutral fraction accounted for 16.4, 47.6, and 36.0 wt %, respectively. The GC–MS analysis showed that the first neutral subfraction (15.7 wt %) contained alkanes, alkenes, and cycloalkanes; the second subfraction (52.0 wt %) contained 1–6-ring aromatics; the third subfraction (4.6 wt %) contained neutral nitrogen compounds, such as indoles, carbazoles, and benzocarbazoles; the fourth subfraction (8.2 wt %) contained neutral polar compounds, such as C<sub>8</sub>–C<sub>28</sub> alkyl nitriles and aliphatic and aromatic ketones, such as 4-, 5-, and 6-ketones and phenyl ketones, derived from a series of propiophenone to decanophenone; the fifth subfraction (14.9 wt %) contained 2-ketones and aromatic ketones, such as acetophenones, indanones, and acetonaphthones; and most of the sixth subfraction (1.3 wt %) cannot be eluted from GC. Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze the third neutral subfraction, which was enriched with neutral nitrogen compounds. In addition to indoles, carbazoles, and benzocarbazoles, FT-ICR MS analysis showed that dibenzocarbazoles and tribenzocarbazoles with various carbon numbers were present in the third neutral subfraction

    Similar works

    Full text

    thumbnail-image

    Available Versions