Piezoelectric Effects of Applied Electric Fields on Hydrogen-Bond Interactions: First-Principles Electronic Structure Investigation of Weak Electrostatic Interactions

Abstract

The piezoelectric properties of 2-methyl-4-nitroaniline crystals were explored qualitatively and quantitatively using an electrostatically embedded many-body (EE-MB) expansion scheme for the correlation energies of a system of monomers within the crystal. The results demonstrate that hydrogen bonding is an inherently piezoelectric interaction, deforming in response to the electrostatic environment. We obtain piezo-coefficients in excellent agreement with the experimental values. This approach reduces computational cost and reproduces the total resolution of the identity (RI)-Møller–Plesset second-order perturbation theory (RI-MP2) energy for the system to within 1.3 × 10<sup>–5</sup>%. Furthermore, the results suggest novel ways to self-assemble piezoelectric solids and suggest that accurate treatment of hydrogen bonds requires precise electrostatic evaluation. Considering the ubiquity of hydrogen bonds across chemistry, materials, and biology, a new electromechanical view of these interactions is required

    Similar works

    Full text

    thumbnail-image

    Available Versions