PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region

Abstract

The improvement of solar cell performance in the near-infrared (near-IR) region is an important challenge to increase power conversion efficiency under one-sun illumination. PbS quantum-dot (QD)-based heterojunction solar cells with high efficiency in the near-IR region were constructed by combining ZnO nanowire arrays with PbS QDs, which give a first exciton absorption band centering at wavelengths longer than 1 μm. The morphology of ZnO nanowire arrays was systematically investigated to achieve high light-harvesting efficiency as well as efficient carrier collection. The solar cells with the PbS QD/ZnO nanowire structures made up of densely grown thin ZnO nanowires about 1.2 μm long yielded a maximum incident-photon-to-current conversion efficiency (IPCE) of 58% in the near-IR region (@1020 nm) and over 80% in the visible region (shorter than 670 nm). The power conversion efficiency obtained on the solar cell reached about 6.0% under simulated one-sun illumination

    Similar works

    Full text

    thumbnail-image

    Available Versions