Modulation
of a Protein Free-Energy Landscape by Circular
Permutation
- Publication date
- Publisher
Abstract
Circular
permutations usually retain the native structure and function
of a protein while inevitably perturbing its folding dynamics. By
using simulations with a structure-based model and a rigorous methodology
to determine free-energy surfaces from trajectories, we evaluate the
effect of a circular permutation on the free-energy landscape of the
protein T4 lysozyme. We observe changes which, although subtle, largely
affect the cooperativity between the two subdomains. Such a change
in cooperativity has been previously experimentally observed and recently
also characterized using single molecule optical tweezers and the
Crooks relation. The free-energy landscapes show that both the wild
type and circular permutant have an on-pathway intermediate, previously
experimentally characterized, in which one of the subdomains is completely
formed. The landscapes, however, differ in the position of the rate-limiting
step for folding, which occurs before the intermediate in the wild
type and after in the circular permutant. This shift of transition
state explains the observed change in the cooperativity. The underlying
free-energy landscape thus provides a microscopic description of the
folding dynamics and the connection between circular permutation and
the loss of cooperativity experimentally observed