Water Encapsulation Control in Individual Single-Walled Carbon Nanotubes by Laser Irradiation

Abstract

Owing to one-dimensionality, nanoscale curvature, and high chemical stability, single-walled carbon nanotubes (SWNTs) have unique surfaces for gas molecules: outer surface as adsorption (exohedral) site and inner surface that provides encapsulation (endohedral) space. Because as-grown SWNTs have different structure (chirality and diameter) and they are normally bundled, it is extremely difficult to investigate the intrinsic properties of SWNTs as adsorbent. Here we demonstrate controlling adsorption and encapsulation states of water in individual suspended SWNTs using laser irradiation with monitoring of their behavior by photoluminescence measurement and perform molecular dynamics simulation. The laser heating and the pressure control make water molecules encapsulated or ejected for SWNTs, which are individually oxidized and opened with laser heating. The precise control of oxidization makes it possible to observe the cluster formation of water molecules during the encapsulation process and to confine water molecules inside SWNTs even in vacuum

    Similar works

    Full text

    thumbnail-image

    Available Versions